CONSERVATIONAND MATERIALSCOMPATIBILITYIN THE
ARCHAEOLOGICAL SITE OF VIALE TRIESTE 105 (CA) - SARDINIA
Paola Meloni1,2, Gianfranco Carcangiu ,3 Francesco Secchi ,4 Giuseppe Desogus ,5 Roberto Ricciu ,5 Marta
Casti2,5,OmbrettaCocco1,2
1 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali (DIMCM), Università degli Studi di Cagliari, Via
Marengo2,09123Cagliari,Italy,paola.meloni@dimcm.unica.it,ombretta.cocco@unica.it;
2 Università degli Studi di Cagliari, Laboratorio Colle di Bonaria, Via Ravenna snc, 09125, Cagliari, Italy,
paola.meloni@dimcm.unica.it,marta.casti@unica.it,ombretta.cocco@unica.it;
3 IGAG–CNR - Istituto di Geologia Ambientale e Geoingegneria, UOS di Cagliari, Piazza d’Armi, 09123 Cagliari,
Italy,gcarcan@unica.it;
4 Dipartimento di Scienze della Natura e del Territorio, Università degli Studi di Sassari, Via Piandanna 4, 07100
Sassari,Italy,secchig@uniss.it;
5 Dipartimento di Ingegneria Civile, Ambientale e Architettura (DICAAR), Università degli Studi di Cagliari, Piazza
d’Armi,09123Cagliari,Italy,g.desog@unica.it,ricciu@unica.it,marta.casti@unica.it.
ABSTRACT
Despite the deleterious outcomes resulting from the use of modern materials in the restoration, the problem
of matter’s compatibility is still very much debated. An example is the archaeological area of Viale Trieste
105 in Cagliari (Sardinia), composed by a complex multilayered structures dating from IV-III century BC to
VII century AD. In the 80s, to allow the construction of a parking, a reinforced concrete structure with side
openings was built over the site. The absolute lack of planned preventive maintenance allowed the different
agents of decay to perform their action against the emerging structures, as the contamination of reinforced
concrete’s products of decay (alkaline sulfates). The design of recent restoration has required an accurate
diagnosis and microclimatic monitoring of the site. The XRD revealed that the salts which contaminate
structures are the alkaline sulfates, supporting the hypothesis that their origin can be derived from the
degradation of the cement. The most diffused lithotype is the so-called “pietra cantone”, a biomicritic
limestone whose microstructure favors the phenomenon of salt crystallization. The microclimatic monitoring
has detected intense energy exchanges with the outside as regard the structures closest to the openings,
suggesting greater risk of stresses and permitting the entrance of air pollutants. The results reveal a dramatic
situationfortheconservationofthesearchaeologicalstructures,requiringimminentinterventions.
Key-words:archaeologicalsite,biomicriticlimestone,cement,sodiumsulfatecrystallization, microclimate.